Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Virol ; 98(2): e0168323, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38226809

RESUMO

Emerging and endemic zoonotic diseases continue to threaten human and animal health, our social fabric, and the global economy. Zoonoses frequently emerge from congregate interfaces where multiple animal species and humans coexist, including farms and markets. Traditional food markets are widespread across the globe and create an interface where domestic and wild animals interact among themselves and with humans, increasing the risk of pathogen spillover. Despite decades of evidence linking markets to disease outbreaks across the world, there remains a striking lack of pathogen surveillance programs that can relay timely, cost-effective, and actionable information to decision-makers to protect human and animal health. However, the strategic incorporation of environmental surveillance systems in markets coupled with novel pathogen detection strategies can create an early warning system capable of alerting us to the risk of outbreaks before they happen. Here, we explore the concept of "smart" markets that utilize continuous surveillance systems to monitor the emergence of zoonotic pathogens with spillover potential.IMPORTANCEFast detection and rapid intervention are crucial to mitigate risks of pathogen emergence, spillover and spread-every second counts. However, comprehensive, active, longitudinal surveillance systems at high-risk interfaces that provide real-time data for action remain lacking. This paper proposes "smart market" systems harnessing cutting-edge tools and a range of sampling techniques, including wastewater and air collection, multiplex assays, and metagenomic sequencing. Coupled with robust response pathways, these systems could better enable Early Warning and bolster prevention efforts.


Assuntos
Doenças Transmissíveis Emergentes , Monitoramento Epidemiológico , Animais , Humanos , Animais Selvagens , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/veterinária , Surtos de Doenças/prevenção & controle , Zoonoses/epidemiologia , Zoonoses/prevenção & controle
2.
Emerg Microbes Infect ; 13(1): 2297552, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38112157

RESUMO

Avian influenza virus (AIV) in Asia is a complex system with numerous subtypes and a highly porous wild birds-poultry interface. Certain AIV subtypes, such as H14, are underrepresented in current surveillance efforts, leaving gaps in our understanding of their ecology and evolution. The detection of rare subtype H14 in domestic ducks in Southeast Asia comprises a geographic region and domestic bird population previously unassociated with this subtype. These H14 viruses have a complex evolutionary history involving gene reassortment events. They share sequence similarity to AIVs endemic in Cambodian ducks, and Eurasian low pathogenicity and high pathogenicity H5Nx AIVs. The detection of these H14 viruses in Southeast Asian domestic poultry further advances our knowledge of the ecology and evolution of this subtype and reinforces the need for continued, longitudinal, active surveillance in domestic and wild birds. Additionally, in vivo and in vitro risk assessment should encompass rare AIV subtypes, as they have the potential to establish in poultry systems.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Patos , Camboja , Filogenia , Aves , Vírus da Influenza A/genética , Animais Selvagens , Aves Domésticas
3.
Emerg Microbes Infect ; 12(2): 2220569, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37254689

RESUMO

Highly pathogenic avian influenza (HPAI) A/H5N1 viruses continue to pose a significant threat to animal and human health worldwide. In late 2022, the first confirmed case of HPAI A/H5N1 infection in wild birds in Chile near the Chilean-Peruvian border was reported. Active surveillance by our group in the adyacent Lluta river estuary revealed an increase in A/H5N1 prevalence coinciding with the arrival of migratory birds from the Northern Hemisphere. Genomic analysis of A/H5N1-positive samples demonstrated a close genetic relationship to strains detected in Peru during the same period, which originated from A/H5N1 viruses causing outbreaks in North America. Notably, we identified genetic mutations that did not correlate with known enhanced transmission or binding traits to mammalian receptors. In summary, this study provides valuable genomic insights into the A/H5N1 Clade 2.3.4.4b viruses in wild birds in Chile, emphasizing the need for enhanced surveillance and response strategies to mitigate the threat posed by these highly pathogenic avian influenza viruses in South America.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , Aves , Chile/epidemiologia , Vírus da Influenza A/fisiologia , Virus da Influenza A Subtipo H5N1/genética , Mamíferos , Filogenia
4.
Front Med (Lausanne) ; 10: 1161268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168265

RESUMO

Molecular multiplex assays (MPAs) for simultaneous detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza and respiratory syncytial virus (RSV) in a single RT-PCR reaction reduce time and increase efficiency to identify multiple pathogens with overlapping clinical presentation but different treatments or public health implications. Clinical performance of XpertXpress® SARS-CoV-2/Flu/RSV (Cepheid, GX), TaqPath™ COVID-19, FluA/B, RSV Combo kit (Thermo Fisher Scientific, TP), and PowerChek™ SARS-CoV-2/Influenza A&B/RSV Multiplex RT-PCR kit II (KogeneBiotech, PC) was compared to individual Standards of Care (SoC). Thirteen isolates of SARS-CoV-2, human seasonal influenza, and avian influenza served to assess limit of detection (LoD). Then, positive and negative residual nasopharyngeal specimens, collected under public health surveillance and pandemic response served for evaluation. Subsequently, comparison of effectiveness was assessed. The three MPAs confidently detect all lineages of SARS-CoV-2 and influenza viruses. MPA-LoDs vary from 1 to 2 Log10 differences from SoC depending on assay and strain. Clinical evaluation resulted in overall agreement between 97 and 100%, demonstrating a high accuracy to detect all targets. Existing differences in costs, testing burden and implementation constraints influence the choice in primary or community settings. TP, PC and GX, reliably detect SARS-CoV-2, influenza and RSV simultaneously, with reduced time-to-results and simplified workflows. MPAs have the potential to enhance diagnostics, surveillance system, and epidemic response to drive policy on prevention and control of viral respiratory infections.

5.
Microbiol Spectr ; 11(3): e0001023, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37098954

RESUMO

Obesity is a risk factor for severe disease and mortality for both influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. While previous studies show that individuals with obesity generate antibody responses following influenza vaccination, infection rates within the obese group were twice as high as those in the healthy-weight group. The repertoire of antibodies raised against influenza viruses following previous vaccinations and/or natural exposures is referred to here as baseline immune history (BIH). To investigate the hypothesis that obesity impacts immune memory to infections and vaccines, we profiled the BIH of obese and healthy-weight adults vaccinated with the 2010-2011 seasonal influenza vaccine in response to conformational and linear antigens. Despite the extensive heterogeneity of the BIH profiles in both groups, there were striking differences between obese and healthy subjects, especially with regard to A/H1N1 strains and the 2009 pandemic virus (Cal09). Individuals with obesity had lower IgG and IgA magnitude and breadth for a panel of A/H1N1 whole viruses and hemagglutinin proteins from 1933 to 2009 but increased IgG magnitude and breadth for linear peptides from the Cal09 H1 and N1 proteins. Age was also associated with A/H1N1 BIH, with young individuals with obesity being more likely to have reduced A/H1N1 BIH. We found that individuals with low IgG BIH had significantly lower neutralizing antibody titers than individuals with high IgG BIH. Taken together, our findings suggest that increased susceptibility of obese participants to influenza infection may be mediated in part by obesity-associated differences in the memory B-cell repertoire, which cannot be ameliorated by current seasonal vaccination regimens. Overall, these data have vital implications for the next generation of influenza virus and SARS-CoV-2 vaccines. IMPORTANCE Obesity is associated with increased morbidity and mortality from influenza and SARS-CoV-2 infection. While vaccination is the most effective strategy for preventing influenza virus infection, our previous studies showed that influenza vaccines fail to provide optimal protection in obese individuals despite reaching canonical correlates of protection. Here, we show that obesity may impair immune history in humans and cannot be overcome by seasonal vaccination, especially in younger individuals with decreased lifetime exposure to infections and seasonal vaccines. Low baseline immune history is associated with decreased protective antibody responses. Obesity potentially handicaps overall responses to vaccination, biasing it toward responses to linear epitopes, which may reduce protective capacity. Taken together, our data suggest that young obese individuals are at an increased risk of reduced protection by vaccination, likely due to altered immune history biased toward nonprotective antibody responses. Given the worldwide obesity epidemic coupled with seasonal respiratory virus infections and the inevitable next pandemic, it is imperative that we understand and improve vaccine efficacy in this high-risk population. The design, development, and usage of vaccines for and in obese individuals may need critical evaluation, and immune history should be considered an alternate correlate of protection in future vaccine clinical trials.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Adulto , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , Influenza Humana/prevenção & controle , Anticorpos Antivirais , Obesidade , Imunoglobulina G
6.
Virus Evol ; 9(1): veac121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36654682

RESUMO

The first case of coronavirus disease 2019 (COVID-19) in Cambodia was confirmed on 27 January 2020 in a traveller from Wuhan. Cambodia subsequently implemented strict travel restrictions, and although intermittent cases were reported during the first year of the COVID-19 pandemic, no apparent widespread community transmission was detected. Investigating the routes of severe acute respiratory coronavirus 2 (SARS-CoV-2) introduction into the country was critical for evaluating the implementation of public health interventions and assessing the effectiveness of social control measures. Genomic sequencing technologies have enabled rapid detection and monitoring of emerging variants of SARS-CoV-2. Here, we detected 478 confirmed COVID-19 cases in Cambodia between 27 January 2020 and 14 February 2021, 81.3 per cent in imported cases. Among them, fifty-four SARS-CoV-2 genomes were sequenced and analysed along with representative global lineages. Despite the low number of confirmed cases, we found a high diversity of Cambodian viruses that belonged to at least seventeen distinct PANGO lineages. Phylogenetic inference of SARS-CoV-2 revealed that the genetic diversity of Cambodian viruses resulted from multiple independent introductions from diverse regions, predominantly, Eastern Asia, Europe, and Southeast Asia. Most cases were quickly isolated, limiting community spread, although there was an A.23.1 variant cluster in Phnom Penh in November 2020 that resulted in a small-scale local transmission. The overall low incidence of COVID-19 infections suggests that Cambodia's early containment strategies, including travel restrictions, aggressive testing and strict quarantine measures, were effective in preventing large community outbreaks of COVID-19.

7.
medRxiv ; 2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36711477

RESUMO

Background: Molecular multiplex assays (MPAs) for simultaneous detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza and respiratory syncytial virus (RSV) in a single RT-PCR reaction reduce time and increase efficiency to identify multiple pathogens with overlapping clinical presentation but different treatments or public health implications. Methods: Clinical performance of XpertXpress ® SARS-CoV-2/Flu/RSV (Cepheid, GX), TaqPath™ COVID-19, FluA/B, RSV Combo kit (Thermo Fisher Scientific, TP), and PowerChek™ SARS-CoV-2/Influenza A&B/RSV Multiplex RT-PCR kit II (KogeneBiotech, PC) was compared to individual Standards of Care (SoC). Thirteen isolates of SARS-CoV-2, human seasonal influenza, and avian influenza served to assess limit of detection (LoD). Then, positive and negative residual nasopharyngeal specimens, collected under public health surveillance and pandemic response served for evaluation. Subsequently, comparison of effectiveness was assessed. Results: The three MPAs confidently detect all lineages of SARS-CoV-2 and influenza viruses. MPA-LoDs vary from 1-2 Log10 differences from SoC depending on assay and strain. Clinical evaluation resulted in overall agreement between 97% and 100%, demonstrating a high accuracy to detect all targets. Existing differences in costs, testing burden and implementation constraints influence the choice in primary or community settings. Conclusion: TP, PC and GX, reliably detect SARS-CoV-2, influenza and RSV simultaneously, with reduced time-to-results and simplified workflows. MPAs have the potential to enhancediagnostics, surveillance system, and epidemic response to drive policy on prevention and control of viral respiratory infections. IMPORTANCE: Viral respiratory infections represent a major burden globally, weighed down by the COVID-19 pandemic, and threatened by spillover of novel zoonotic influenza viruses. Since respiratory infections share clinical presentations, identification of the causing agent for patient care and public health measures requires laboratory testing for several pathogens, including potential zoonotic spillovers. Simultaneous detection of SARS-CoV-2, influenza, and RSV in a single RT-PCR accelerates time from sampling to diagnosis, preserve consumables, and streamline human resources to respond to other endemic or emerging pathogens. Multiplex assays have the potential to sustain and even expand surveillance systems, can utilize capacity/capability developed during the COVID-19 pandemic worldwide, thereby strengthening epidemic/pandemic preparedness, prevention, and response.

8.
Zoonoses Public Health ; 70(2): 171-175, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36409285

RESUMO

Live bird markets (LBMs) have been identified as key factors in the spread, persistence and evolution of avian influenza viruses (AIVs). In addition, these settings have been associated with human infections with AIVs of pandemic concern. Exposure to aerosolised AIVs by workers in a Cambodian LBM was assessed using aerosol impact samplers. LBM vendors were asked to wear an air sampler for 30 min per day for 1 week while continuing their usual activities in the LBM during a period of high AIV circulation (February) and a period of low circulation (May). During the period of high circulation, AIV RNA was detected from 100% of the air samplers using molecular methods and viable AIV (A/H5N1 and/or A/H9N2) was isolated from 50% of air samplers following inoculation into embryonated chicken eggs. In contrast, AIV was not detected by molecular methods or successfully isolated during the period of low circulation. This study demonstrates the increased risk of aerosol exposure of LBM workers to AIVs during periods of high circulation and highlights the need for interventions during these high-risk periods. Novel approaches, such as environmental sampling, should be further explored at key high-risk interfaces as a potentially cost-effective alternative for monitoring pandemic threats.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Animais , Humanos , Influenza Humana/epidemiologia , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/epidemiologia , Camboja/epidemiologia , Aerossóis e Gotículas Respiratórios , Galinhas , Filogenia
9.
Emerg Infect Dis ; 29(1): 170-174, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573541

RESUMO

In late 2021, highly pathogenic avian influenza A(H5N8) clade 2.3.4.4b viruses were detected in domestic ducks in poultry markets in Cambodia. Surveillance, biosafety, and biosecurity efforts should be bolstered along the poultry value chain to limit spread and infection risk at the animal-human interface.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Influenza Humana , Doenças das Aves Domésticas , Animais , Humanos , Influenza Aviária/epidemiologia , Camboja/epidemiologia , Aves , Patos , Aves Domésticas , Filogenia
10.
Microbiol Spectr ; 11(1): e0420722, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36515551

RESUMO

Backyard farming with limited biosecurity creates a massive potential for zoonotic spillover. Cambodia, a developing nation in Southeast Asia, is a hub for emerging and endemic infectious diseases. Due to pandemic-induced job losses in the tourism sector, rumors suggest that many former Cambodian tour guides have turned to backyard farming as a source of income and food security. A cross-sectional study including 331 tour guides and 69 poultry farmers in Cambodia before and during the novel coronavirus disease 2019 (COVID-19) pandemic was conducted. Participants were administered a survey to assess food security, income, and general farming practices. Survey data were collected to evaluate the risk perceptions for avian influenza virus (AIV), antimicrobial resistance (AMR), and general biosecurity management implemented on these poultry farms. Overall, food security decreased for 80.1% of the tour guides during the COVID-19 pandemic. Approximately 21% of the tour guides interviewed used backyard poultry farming to supplement losses of income and food insecurity during the COVID-19 pandemic, with a significantly higher risk than for traditional poultry farmers. Agricultural intensification in Cambodia due to the COVID-19 pandemic has caused an influx of makeshift farms with limited biosecurity. Inadequate biosecurity measures in animal farms can facilitate spillover and contribute to future pandemics. Improved biosecurity and robust viral surveillance systems are critical for reducing the risk of spillover from backyard farms. IMPORTANCE While this study highlights COVID-19-associated changes in poultry production at a small scale in Cambodia, poultry production is expected to expand due to an increase in the global demand for poultry protein during the pandemic, changes in urbanization, and the reduction of the global pork supply caused by African swine fever (ASF). The global demand and surge in poultry products, combined with inadequate biosecurity methods, can lead to an increased risk of domestic animal and human spillovers of zoonotic pathogens such as avian influenza. Countries in regions of endemicity are often plagued by complex emergency situations (i.e., food insecurity and economic fallouts) that hinder efforts to effectively address the emergence (or reemergence) of zoonotic diseases. Thus, novel surveillance strategies for endemic and emerging infectious diseases require robust surveillance systems and biosecurity training programs to prevent future global pandemics.


Assuntos
Febre Suína Africana , COVID-19 , Influenza Aviária , Doenças das Aves Domésticas , Humanos , Animais , Suínos , Influenza Aviária/epidemiologia , Influenza Aviária/prevenção & controle , Pandemias/prevenção & controle , Camboja/epidemiologia , Fazendas , Biosseguridade , Febre Suína Africana/epidemiologia , Estudos Transversais , Criação de Animais Domésticos/métodos , COVID-19/epidemiologia , Zoonoses/epidemiologia , Zoonoses/prevenção & controle , Aves Domésticas
11.
Microbiol Spectr ; 10(3): e0044922, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35638834

RESUMO

Bats are considered the natural reservoir of numerous emerging viruses such as severe acute respiratory syndrome coronaviruses (SARS-CoVs). There is a need for immortalized bat cell lines to culture and investigate the pathogenicity, replication kinetics, and evolution of emerging coronaviruses. We illustrate the susceptibility and permissiveness of a spontaneously immortalized kidney cell line (Rhileki) from Blyth's horseshoe bat (R. lepidus) to SARS-CoV-2 virus, including clinical isolates, suggesting a possible virus-host relationship. We were able to observe limited SARS-CoV-2 replication in Rhileki cells compared with simian VeroE6 cells. Slower viral replication in Rhileki cells was indicated by higher ct values (RT-PCR) at later time points of the viral culture and smaller foci (foci forming assay) compared with those of VeroE6 cells. With this study we demonstrate that SARS-CoV-2 replication is not restricted to R. sinicus and could include more Rhinolophus species. The establishment of a continuous Rhinolophus lepidus kidney cell line allows further characterization of SARS-CoV-2 replication in Rhinolophus bat cells, as well as isolation attempts of other bat-borne viruses. IMPORTANCE The current COVID-19 pandemic demonstrates the significance of bats as reservoirs for severe viral diseases. However, as bats are difficult to establish as animal models, bat cell lines can be an important proxy for the investigation of bat-virus interactions and the isolation of bat-borne viruses. This study demonstrates the susceptibility and permissiveness of a continuous kidney bat cell line to SARS-CoV-2. This does not implicate the bat species Rhinolophus lepidus, where these cells originate from, as a potential reservoir, but emphasizes the usefulness of this cell line for further characterization of SARS-CoV-2. This can lead to a better understanding of emerging viruses that could cause significant disease in humans and domestic animals.


Assuntos
COVID-19 , Quirópteros , Animais , Humanos , Rim , Pandemias , Filogenia , SARS-CoV-2
12.
Front Med (Lausanne) ; 9: 864972, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602487

RESUMO

Introduction: Accurate and sensitive measurement of antibodies is critical to assess the prevalence of infection, especially asymptomatic infection, and to analyze the immune response to vaccination during outbreaks and pandemics. A broad variety of commercial and in-house serological assays are available to cater to different laboratory requirements; however direct comparison is necessary to understand utility. Materials and Methods: We investigate the performance of six serological methods against SARS-CoV-2 to determine the antibody profile of 250 serum samples, including 234 RT-PCR-confirmed SARS-CoV-2 cases, the majority with asymptomatic presentation (87.2%) at 1-51 days post laboratory diagnosis. First, we compare to the performance of two in-house antibody assays: (i) an in-house IgG ELISA, utilizing UV-inactivated virus, and (ii) a live-virus neutralization assay (PRNT) using the same Cambodian isolate as the ELISA. In-house assays are then compared to standardized commercial anti-SARS-CoV-2 electrochemiluminescence immunoassays (Elecsys ECLIAs, Roche Diagnostics; targeting anti-N and anti-S antibodies) along with a flow cytometry based assay (FACS) that measures IgM and IgG against spike (S) protein and a multiplex microsphere-based immunoassay (MIA) determining the antibodies against various spike and nucleoprotein (N) antigens of SARS-CoV-2 and other coronaviruses (SARS-CoV-1, MERS-CoV, hCoVs 229E, NL63, HKU1). Results: Overall, specificity of assays was 100%, except for the anti-S IgM flow cytometry based assay (96.2%), and the in-house IgG ELISA (94.2%). Sensitivity ranged from 97.3% for the anti-S ECLIA down to 76.3% for the anti-S IgG flow cytometry based assay. PRNT and in-house IgG ELISA performed similarly well when compared to the commercial ECLIA: sensitivity of ELISA and PRNT was 94.7 and 91.1%, respectively, compared to S- and N-targeting ECLIA with 97.3 and 96.8%, respectively. The MIA revealed cross-reactivity of antibodies from SARS-CoV-2-infected patients to the nucleocapsid of SARS-CoV-1, and the spike S1 domain of HKU1. Conclusion: In-house serological assays, especially ELISA and PRNT, perform similarly to commercial assays, a critical factor in pandemic response. Selection of suitable immunoassays should be made based on available resources and diagnostic needs.

13.
Front Immunol ; 13: 817905, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185909

RESUMO

The duration of humoral and cellular immune memory following SARS-CoV-2 infection in populations in least developed countries remains understudied but is key to overcome the current SARS-CoV-2 pandemic. Sixty-four Cambodian individuals with laboratory-confirmed infection with asymptomatic or mild/moderate clinical presentation were evaluated for Spike (S)-binding and neutralizing antibodies and antibody effector functions during acute phase of infection and at 6-9 months follow-up. Antigen-specific B cells, CD4+ and CD8+ T cells were characterized, and T cells were interrogated for functionality at late convalescence. Anti-S antibody titers decreased over time, but effector functions mediated by S-specific antibodies remained stable. S- and nucleocapsid (N)-specific B cells could be detected in late convalescence in the activated memory B cell compartment and are mostly IgG+. CD4+ and CD8+ T cell immune memory was maintained to S and membrane (M) protein. Asymptomatic infection resulted in decreased antibody-dependent cellular cytotoxicity (ADCC) and frequency of SARS-CoV-2-specific CD4+ T cells at late convalescence. Whereas anti-S antibodies correlated with S-specific B cells, there was no correlation between T cell response and humoral immune memory. Hence, all aspects of a protective immune response are maintained up to nine months after SARS-CoV-2 infection and in the absence of re-infection.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , SARS-CoV-2/imunologia , Linfócitos B/imunologia , COVID-19/patologia , Camboja , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Humanos , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Fosfoproteínas/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
14.
J Infect Dis ; 225(2): 341-351, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34197595

RESUMO

BACKGROUND: Influenza immunization during pregnancy provides protection to the mother and the infant. Studies in adults and children with inactivated influenza vaccine have identified changes in immune gene expression that were correlated with antibody responses. The current study was performed to define baseline blood transcriptional profiles and changes induced by inactivated influenza vaccine in pregnant women and to identify correlates with antibody responses. METHODS: Pregnant women were immunized with inactivated influenza vaccine during the 2013-2014 and 2014-2015 seasons. Blood samples were collected on day 0 (before vaccination) and on days 1 and 7 after vaccination for transcriptional profile analyses, and on days 0 and 30, along with delivery and cord blood samples, to measure antibody titers. RESULTS: Transcriptional analysis demonstrated overexpression of interferon-stimulated genes (ISGs) on day 1 and of plasma cell genes on day 7. Prevaccination ISG expression and ISGs overexpressed on day 1 were significantly correlated with increased H3N2, B Yamagata, and B Victoria antibody titers. Plasma cell gene expression on day 7 was correlated with increased B Yamagata and B Victoria antibody titers. Compared with women who were vaccinated during the previous influenza season, those who were not showed more frequent significant correlations between ISGs and antibody titers. CONCLUSIONS: Influenza vaccination in pregnant women resulted in enhanced expression of ISGs and plasma cell genes correlated with antibody responses. Brief summary: This study identified gene expression profiles of interferon-stimulated genes and plasma cells before vaccination and early after vaccination that were correlated with antibody responses in pregnant women vaccinated for influenza.


Assuntos
Anticorpos Antivirais/sangue , Antígenos de Grupos Sanguíneos , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Interferons/genética , Formação de Anticorpos , Antivirais/uso terapêutico , Feminino , Perfilação da Expressão Gênica , Humanos , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Gravidez , Gestantes , Transcriptoma , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
15.
Nat Commun ; 12(1): 6563, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753934

RESUMO

Knowledge of the origin and reservoir of the coronavirus responsible for the ongoing COVID-19 pandemic is still fragmentary. To date, the closest relatives to SARS-CoV-2 have been detected in Rhinolophus bats sampled in the Yunnan province, China. Here we describe the identification of SARS-CoV-2 related coronaviruses in two Rhinolophus shameli bats sampled in Cambodia in 2010. Metagenomic sequencing identifies nearly identical viruses sharing 92.6% nucleotide identity with SARS-CoV-2. Most genomic regions are closely related to SARS-CoV-2, with the exception of a region of the spike, which is not compatible with human ACE2-mediated entry. The discovery of these viruses in a bat species not found in China indicates that SARS-CoV-2 related viruses have a much wider geographic distribution than previously reported, and suggests that Southeast Asia represents a key area to consider for future surveillance for coronaviruses.


Assuntos
COVID-19/virologia , Quirópteros/virologia , SARS-CoV-2/genética , Sequência de Aminoácidos , Animais , COVID-19/epidemiologia , COVID-19/metabolismo , Camboja/epidemiologia , Evolução Molecular , Genoma Viral , Filogenia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
16.
J Virol ; 95(24): e0126721, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34586866

RESUMO

Introduction of non-pharmaceutical interventions to control COVID-19 in early 2020 coincided with a global decrease in active influenza circulation. However, between July and November 2020, an influenza A(H3N2) epidemic occurred in Cambodia and in other neighboring countries in the Greater Mekong Subregion in Southeast Asia. We characterized the genetic and antigenic evolution of A(H3N2) in Cambodia and found that the 2020 epidemic comprised genetically and antigenically similar viruses of Clade3C2a1b/131K/94N, but they were distinct from the WHO recommended influenza A(H3N2) vaccine virus components for 2020-2021 Northern Hemisphere season. Phylogenetic analysis revealed multiple virus migration events between Cambodia and bordering countries, with Laos PDR and Vietnam also reporting similar A(H3N2) epidemics immediately following the Cambodia outbreak: however, there was limited circulation of these viruses elsewhere globally. In February 2021, a virus from the Cambodian outbreak was recommended by WHO as the prototype virus for inclusion in the 2021-2022 Northern Hemisphere influenza vaccine. IMPORTANCE The 2019 coronavirus disease (COVID-19) pandemic has significantly altered the circulation patterns of respiratory diseases worldwide and disrupted continued surveillance in many countries. Introduction of control measures in early 2020 against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection has resulted in a remarkable reduction in the circulation of many respiratory diseases. Influenza activity has remained at historically low levels globally since March 2020, even when increased influenza testing was performed in some countries. Maintenance of the influenza surveillance system in Cambodia in 2020 allowed for the detection and response to an influenza A(H3N2) outbreak in late 2020, resulting in the inclusion of this virus in the 2021-2022 Northern Hemisphere influenza vaccine.


Assuntos
COVID-19/epidemiologia , Vírus da Influenza A Subtipo H3N2/genética , Vacinas contra Influenza/imunologia , Influenza Humana/complicações , Influenza Humana/imunologia , Camboja/epidemiologia , Surtos de Doenças , Humanos , Influenza Humana/epidemiologia , Influenza Humana/virologia , Laos , Funções Verossimilhança , Filogenia , SARS-CoV-2 , Vietnã
17.
Emerg Infect Dis ; 27(10): 2742-2745, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34546164

RESUMO

In February 2021, routine sentinel surveillance for influenza-like illness in Cambodia detected a human avian influenza A(H9N2) virus infection. Investigations identified no recent H9N2 virus infections in 43 close contacts. One chicken sample from the infected child's house was positive for H9N2 virus and genetically similar to the human virus.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Animais , Aves , Camboja/epidemiologia , Galinhas , Humanos , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/epidemiologia , Influenza Humana/epidemiologia
18.
Cell ; 184(17): 4373-4374, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34416143

RESUMO

Since the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019, there has been a global hunt for the origin of the ongoing pandemic. Zhou et al. provide further evidence of coronavirus diversity, including four novel SARS-CoV-2-related viruses, in bat species in Yunnan province, China.


Assuntos
COVID-19 , Quirópteros , Animais , China , Humanos , Pandemias , SARS-CoV-2
19.
medRxiv ; 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33688682

RESUMO

As highlighted by the ongoing COVID-19 pandemic, vaccination is critical for infectious disease prevention and control. Obesity is associated with increased morbidity and mortality from respiratory virus infections. While obese individuals respond to influenza vaccination, what is considered a seroprotective response may not fully protect the global obese population. In a cohort vaccinated with the 2010-2011 trivalent inactivated influenza vaccine, baseline immune history and vaccination responses were found to significantly differ in obese individuals compared to healthy controls, especially towards the 2009 pandemic strain of A/H1N1 influenza virus. Young, obese individuals displayed responses skewed towards linear peptides versus conformational antigens, suggesting aberrant obese immune response. Overall, these data have vital implications for the next generation of influenza vaccines, and towards the current SARS-CoV-2 vaccination campaign.

20.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33416462

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), presents a challenge to laboratorians and healthcare workers around the world. Handling of biological samples from individuals infected with the SARS-CoV-2 virus requires strict biosafety measures. Within the laboratory, non-propagative work with samples containing the virus requires, at minimum, Biosafety Level-2 (BSL-2) techniques and facilities. Therefore, handling of SARS-CoV-2 samples remains a major concern in areas and conditions where biosafety for specimen handling is difficult to maintain, such as in rural laboratories or austere field testing sites. Inactivation through physical or chemical means can reduce the risk of handling live virus and increase testing ability especially in low-resource settings due to easier and faster sample processing. Herein we assess several chemical and physical inactivation techniques employed against SARS-CoV-2 isolates from Cambodia. This data demonstrates that all chemical (AVL, inactivating sample buffer and formaldehyde) and heat-treatment (56 and 98 °C) methods tested completely inactivated viral loads of up to 5 log10.


Assuntos
COVID-19/virologia , Contenção de Riscos Biológicos , SARS-CoV-2 , Manejo de Espécimes , Inativação de Vírus , Animais , Camboja , Células Cultivadas , Chlorocebus aethiops , Temperatura Alta , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Carga Viral/efeitos dos fármacos , Carga Viral/estatística & dados numéricos , Inativação de Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...